skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since SSH’s standardization nearly 20 years ago, real-world requirements for a remote access protocol and our understanding of how to build secure cryptographic network protocols have both evolved significantly. In this work, we introduce Hop, a transport and remote access protocol designed to support today’s needs. Building on modern cryptographic advances, Hop reduces SSH protocol complexity and overhead while simultaneously addressing many of SSH’s shortcomings through a cryptographically-mediated delegation scheme, native host identification based on lessons from TLS and ACME, client authentication for modern enterprise environments, and support for client roaming and intermittent connectivity. We present concrete design requirements for a modern remote access protocol, describe our proposed protocol, and evaluate its performance. We hope that our work encourages discussion of what a modern remote access protocol should look like in the future. 
    more » « less
    Free, publicly-accessible full text available September 1, 2027
  2. Differential privacy is the dominant standard for formal and quantifiable privacy and has been used in major deployments that impact millions of people. Many differentially private algorithms for query release and synthetic data contain steps that reconstruct answers to queries from answers to other queries that have been measured privately. Reconstruction is an important subproblem for such mecha- nisms to economize the privacy budget, minimize error on reconstructed answers, and allow for scalability to high-dimensional datasets. In this paper, we introduce a principled and efficient postprocessing method ReM (Residuals-to-Marginals) for reconstructing answers to marginal queries. Our method builds on recent work on efficient mechanisms for marginal query release, based on making measurements using a residual query basis that admits efficient pseudoinversion, which is an important primitive used in reconstruction. An extension GReM-LNN (Gaussian Residuals-to-Marginals with Local Non-negativity) reconstructs marginals under Gaussian noise satisfying consistency and non-negativity, which often reduces error on reconstructed answers. We demonstrate the utility of ReM and GReM-LNN by applying them to improve existing private query answering mechanisms. 
    more » « less
    Free, publicly-accessible full text available December 15, 2026
  3. Free, publicly-accessible full text available March 1, 2027
  4. Free, publicly-accessible full text available January 1, 2027
  5. Free, publicly-accessible full text available January 1, 2027
  6. Free, publicly-accessible full text available January 7, 2027
  7. Free, publicly-accessible full text available November 1, 2026
  8. Free, publicly-accessible full text available December 1, 2026
  9. Free, publicly-accessible full text available December 1, 2026
  10. Advanced Air Mobility (AAM) presents an emerging alternative to traditional car driving for commuting in metropolitan areas. However, its feasibility has not been thoroughly studied nor well understood at the operational level. Given that AAM has not been in place, this study explores the economic, energy, and environmental feasibility of AAM for commuting at an early stage of AAM deployment. We propose a time expanded network model to characterize the dynamics of eVTOL operations between a vertiport pair in different states: in-service flying, relocation flying, charging, and parking, while respecting various operational and commuter time window constraints. By jointly considering eVTOL flying with vertiport access and egress and using real-world data, we demonstrate an application of the model in the Chicago metropolitan area in the US. Different vertiport pairs and eVTOL aircraft models are investigated. We find substantial travel time saving if commuting by AAM. While vehicle operating cost will be higher using eVTOLs than using auto, the generalized travel cost will be less for commuters. On the other hand, with current eVTOL power requirement, the energy consumption and CO2 emissions of AAM will be greater than those of auto driving, with an important contributor being the significance presence of empty flights relocation. These findings, along with sensitivity analysis, shed light on future eVTOL development to enhance the competitiveness of AAM as a viable option for commuting. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026